Tutorial

At its core, xdress is type system on which code generation utilities are written. These utilities may be executed via the xdress command line interface. This tutorial presents a brief walk through of the type system, the STL container wrapper generator, and the C/C++ API wrapper generator.

The Type System

XDress provides an interface for denoting, describing, and converting between various data types and the types coming from various systems. This is achieved by providing canonical abstractions of various kinds of types:

  • Base types (int, str, float, non-templated classes)
  • Refined types (even or odd ints, strings containing the letter ‘a’)
  • Dependent types (templates such arrays, maps, sets, vectors)

All types are known by their name (a string identifier) and may be aliased with other names. However, the string id of a type is not sufficient to fully describe most types. The system here implements a canonical form for all kinds of types. This canonical form is itself hashable, being comprised only of strings, ints, and tuples.

These canonical forms are covered in detail in the Type System documentation. However, what are more important and useful from an end-user perspective are the short hand notations that should be used by mortals:

# Base type are just their names
'str'
'int32'
'float64'

# Aliases may also be used
'f4'     # -> 'float32'
'uint'   # -> 'uint32'
'float'  # -> 'float64'

# Length-1 tuples expand to have scalar predicates
('int32',)  # -> ('int32', 0)

# Refinement types may be listed by name only
'posint'  # -> ('int32', 'posint')

# Templates are given within tuples
('set', 'str')
('map', 'i4', 'float')

# As are dependencies values
('intrange', 1, 2)
('range', 'int32', 1, 2)

# And any combination of the above!
(('map', 'posint', ('set', ('intrange', 1, 2))),)

STL Containers (stlwrap)

The first tool we discuss is the C++ STL container wrapper generator. This tool relies solely on the type system. XDress is governed by a run control file, called xdressrc.py by default. This is a pure Python file that should be placed in the directory where you will run the xdress command. A simple stlwrap run control file would contain the following variables.

xdressrc.py:

package = 'mypack'     # top-level python package name
packagedir = 'mypack'  # location of the python package

stlcontainers = [
    ('vector', 'str'),
    ('set', 'uint'),
    ('map', 'int', 'float'),
    ]

# will be used later, but need to be present now
classes = []
functions = []

This would tell xdress to generate a numpy dtype for std::string (to be used with normal numpy arrays), a wrapper class for std::set<unsigned int>, and a wrapper class for std::map<int, double>. Suppose we started with an empty project,

scopatz@ares ~/mypack $ mkdir src
scopatz@ares ~/mypack $ mkdir mypack
scopatz@ares ~/mypack $ ls *
xdressrc.py

mypack:
__init__.py

src:

We would then run xdress to execute stlwrap. This then generates the following files:

scopatz@ares ~/mypack $ xdress
generating C++ standard library wrappers & converters
scopatz@ares ~/mypack $ ls *
xdressrc.py

mypack:
stlcontainers.pxd       stlcontainers.pyx  tests        xdress_extra_types.pxd
xdress_extra_types.pyx  __init__.pxd       __init__.py

src:
xdress_extra_types.h

It is then our job to pass these files off to Cython and a C++ compiler, typically as part of a larger build system.

C/C++ API Generation (cythongen)

The next tool that is built off of the xdress type system may be used for automatically creating Python wrappers of C/C++ APIs. This requires that the user has GCC-XML and lxml installed are their system. Now suppose we had some C++ code living in the src/ directory.

src/hoover.h:

#if !defined(HOOVER)
#define HOOVER
#include <map>

namespace hoover {
class A{
public:
  A(int x=5);
  ~A();
  std::map<int, double> y;
};

class B : public A {
public:
  B();
  ~B();
  int z;
};

void do_nothing_ab(A a, B b);
};

#endif

src/hoover.cpp:

#include "hoover.h"

namespace hoover {

A::A(int x){y[x] = x * 42.0;};
A::~A(){};

B::B(){z=3;};
B::~B(){};

void do_nothing_ab(A a, B b) {};

}; // namespace hoover

To tell xdress that we what to wrap the A & B classes and the do nothing function, we simply need to tell xdress that they live in hoover. We do this by adding to the classes and functions lists in the run control file.

xdressrc.py:

classes = [
    ('A', 'src/hoover.*'),
    ('B', 'src/hoover.*', 'hoover_b'),
    ]

functions = [('do_nothing_ab', 'src/hoover.*')]

Note that to do this we need only give the construct names – no signatures need be specified. That is the point of API generation! Also note that we only give the base file name with the preceding src/ directory and the file extension (.cpp, .h). Strings passed in here are globbed, so we can be a little lazy. Furthermore, the base names of the source and target files need not be the same...even for APIs which share the same source file! We may then run xdress normally:

scopatz@ares ~/mypack $ xdress
generating C++ standard library wrappers & converters
parsing A
registering A
parsing B
registering B
parsing B
making cython bindings
scopatz@ares ~/mypack $ ls *
xdressrc.py

build:
desc.cache

mypack:
cpp_hoover.pxd    hoover.pyx    stlcontainers.pxd  xdress_extra_types.pxd
cpp_hoover_b.pxd  hoover_b.pxd  stlcontainers.pyx  xdress_extra_types.pyx
hoover.pxd        hoover_b.pyx  tests              __init__.pxd
__init__.py

src:
hoover.cpp  hoover.h  xdress_extra_types.h

Since C/C++ API scraping may be an expensive task for large codes or files, the descriptions of classes and functions that are generated are stored in the build/desc.cache. This cache is simply a pickled dictionary that maps names, source files, and kinds to a hash of the source file and the description. Thus API elements are not re-described if the source file has not changed. You may view the contents of a description cache with the dumpdesc option.

scopatz@ares ~/mypack $ xdress --dumpdesc
{('A', 'src/hoover.cpp', 'class'): ('54a508b1e10845f26d9888a6ad2a470e',
                                    {'attrs': {'y': ('map',
                                                     'int32',
                                                     'float64')},
                                     'methods': {('A', ('x', 'int32', 5)): None,
                                                 ('~A',): None},
                                     'name': 'A',
                                     'namespace': 'hoover',
                                     'parents': None}),
 ('B', 'src/hoover.cpp', 'class'): ('54a508b1e10845f26d9888a6ad2a470e',
                                    {'attrs': {'z': 'int32'},
                                     'methods': {('B',): None,
                                                 ('~B',): None},
                                     'name': 'B',
                                     'namespace': 'hoover',
                                     'parents': ['A']}),
 ('do_nothing_ab', 'src/hoover.cpp', 'func'): ('54a508b1e10845f26d9888a6ad2a470e',
                                               {'name': 'do_nothing_ab',
                                                'namespace': 'hoover',
                                                'signatures': {('do_nothing_ab', ('a', 'A'), ('b', 'B')): 'void'}})}

Be aware that the y member variable on class A – which has type map<int, double> – requires that stlwrap tool also have a matching container. Luckily, we declared ('map', 'int', 'float') in the stlcontainers list previously =).

Once again, it is up to the user to integrate the files created by xdress into their own build system. However, for the above example the following setup.py file will work:

setup.py:

import os
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

import numpy as np

incdirs = [os.path.join(os.getcwd(), 'src'), np.get_include()]

ext_modules = [
    Extension("mypack.mypack_extra_types", ["mypack/mypack_extra_types.pyx"], 
              include_dirs=incdirs, language="c++"),
    Extension("mypack.stlcontainers", ["mypack/stlcontainers.pyx"], 
              include_dirs=incdirs, language="c++"),
    Extension("mypack.hoover", ['src/hoover.cpp', "mypack/hoover.pyx", ],
    	      include_dirs=incdirs, language="c++"),
    Extension("mypack.hoover_b", ['src/hoover.cpp', "mypack/hoover_b.pyx", ],
    	      include_dirs=incdirs, language="c++"),
    ]

setup(  
  name = 'mypack',
  cmdclass = {'build_ext': build_ext},
  ext_modules = ext_modules,
  packages = ['mypack']
)

Or, the following CMakeLists.txt files will work to build the modules with CMake.

CMakeLists.txt:

cmake_minimum_required( VERSION 2.8 )

project( mypack )

# The files in the cmake directory must also be included in your project
# until they are merged into upstream CMake.
set( CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} ${CMAKE_CURRENT_LIST_DIR}/cmake )

include( UseCython )

# With CMake, a clean separation can be made between the source tree and the
# build tree.  When all source is compiled, as with pure C/C++, the source is
# no-longer needed in the build tree.  However, with pure *.py source, the
# source is processed directly.  To handle this, we reproduce the availability
# of the source files in the build tree.
add_custom_target( ReplicatePythonSourceTree ALL ${CMAKE_COMMAND} -P
  ${CMAKE_CURRENT_SOURCE_DIR}/cmake/ReplicatePythonSourceTree.cmake
  ${CMAKE_CURRENT_BINARY_DIR}
  WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} )

include_directories( ${CMAKE_CURRENT_SOURCE_DIR}/src )

enable_testing()
find_file( NOSETESTS_EXECUTABLE nosetests )
add_test( nosetests "${NOSETESTS_EXECUTABLE}" -v --with-xunit )

add_subdirectory( mypack )

mypack/CMakeLists.txt:

if( NOT NUMPY_INCLUDE_DIR )
  find_package( PythonInterp )
  execute_process(
    COMMAND ${PYTHON_EXECUTABLE} -c "import numpy; print(numpy.get_include())"
    OUTPUT_VARIABLE _numpy_include
    OUTPUT_STRIP_TRAILING_WHITESPACE
    )
  find_path( NUMPY_INCLUDE_DIR numpy/arrayobject.h
    HINTS ${_numpy_include} )
endif()
include_directories( ${NUMPY_INCLUDE_DIR}  )

set( cxx_pyx_files
  hoover_b.pyx
  hoover.pyx
  stlcontainers.pyx
  mypack_extra_types.pyx
  )
set_source_files_properties( ${cxx_pyx_files}
  PROPERTIES CYTHON_IS_CXX TRUE )

cython_add_module( mypack_extra_types mypack_extra_types.pyx)
cython_add_module( stlcontainers stlcontainers.pyx )
cython_add_module( hoover hoover.pyx ../src/hoover.cpp )
cython_add_module( hoover_b hoover_b.pyx ../src/hoover.cpp )

Putting It All Together

The following is a more complete, realistic example of an xdressrc.py file that one might run across in a production level environment.

package = 'mypack'     # top-level python package name
packagedir = 'mypack'  # location of the python package

# wrappers for non-standard types (uints, complex)
extra_types = 'xdress_extra_types'

# List of C++ standard library container template types
# to instantiate and wrap with Cython. See the type
# system documentation for more details.  Note that
# vectors are wrapped as numpy arrays of the appropriate
# type.  If the type has no corresponding primitive C++
# type, then a new numpy dtype is created to handle it.
# For example, this allows the wrapping of vector< vector<int> >
# as an np.array(..., dtype=xd_vector_int).
stlcontainers = [
    ('vector', 'str'),
    ('vector', 'int32'),
    ('vector', 'complex'),
    ('vector', 'float32'),
    ('vector', 'float64'),
    ('vector', ('vector', 'float64')),
    ('set', 'int'),
    ('set', 'str'),
    ('set', 'uint'),
    ('set', 'char'),
    ('map', 'str', 'str'),
    ('map', 'str', 'int'),
    ('map', 'int', 'str'),
    ('map', 'str', 'uint'),
    ('map', 'uint', 'str'),
    ('map', 'uint', 'uint'),
    ('map', 'str', 'float'),
    ('map', 'int', 'int'),
    ('map', 'int', 'bool'),
    ('map', 'int', 'char'),
    ('map', 'int', 'float'),
    ('map', 'uint', 'float'),
    ('map', 'int', 'complex'),
    ('map', 'int', ('set', 'int')),
    ('map', 'int', ('set', 'str')),
    ('map', 'int', ('set', 'uint')),
    ('map', 'int', ('set', 'char')),
    ('map', 'int', ('vector', 'str')),
    ('map', 'int', ('vector', 'int')),
    ('map', 'int', ('vector', 'uint')),
    ('map', 'int', ('vector', 'char')),
    ('map', 'int', ('vector', 'bool')),
    ('map', 'int', ('vector', 'float')),
    ('map', 'int', ('vector', ('vector', 'float64'))),
    ('map', 'int', ('map', 'int', 'bool')),
    ('map', 'int', ('map', 'int', 'char')),
    ('map', 'int', ('map', 'int', 'float')),
    ('map', 'int', ('map', 'int', ('vector', 'bool'))),
    ('map', 'int', ('map', 'int', ('vector', 'char'))),
    ('map', 'int', ('map', 'int', ('vector', 'float'))),
    ]

# name of the C++ standard library container module in
# the packagedir
#stlcontainers_module = 'stlcontainers'  # default value

# List of classes to wrap.  These may take one of the following
# forms:
#
#   (classname, base source filename)
#   (classname, base source filename, base package filename)
#   (classname, base source filename, None)
#
# In the first case, the base source filename will be used as
# the base package name as well. In the last case, a None value
# will register this class for the purpose of generating other
# APIs, but will not create the corresponding bindings.  Additionally,
# if the "xdress.autoall" plugin is enabled, you may also use an
# asterix (or star) to tell xdress to search the source file for
# all classes, functions, and/or variables:
#
#   ('*', base source filename)
#   ('*', base source filename, base package filename)
#   ('*', base source filename, None)
#
# This is useful for wrapping larger existing libraries.
classes = [
    ('FCComp', 'src/fccomp.*'),
    ('EnrichmentParameters', 'src/enrichment_parameters.*'),
    ('Enrichment', 'src/bright_enrichment.*', 'enrichment'),
    ('DontWrap', 'src/bright_enrichment.*', None),
    ('Reprocess', 'src/reprocess.*'),
    ]

# List of functions to wrap
functions = [
    ('*', 'src/reprocess.*'),
    ('fillUraniumEnrichmentDefaults', 'src/enrichment_parameters.*'),
    ]

Previous topic

XDress

Next topic

mypack

This Page